The North Pole is world news again.
There was a flurry of publicity in 2007 when a Russian submarine placed a metal flag on the seabed at latitude 90 degrees north. No claim was made, and the event had no geographical significance or political impact, but it demonstrated Russian technology and capability in the Arctic Ocean.
It wasn’t until December 2014 that Denmark claimed the North Pole and surrounding area under the rules of the United Nations Convention on the Law of the Sea (to which all northern nations are signatories), with Russia following suit in August 2015 and Canada later announcing plans to submit its own Arctic continental shelf claim, including the pole, by 2018. This raises historical, political and scientific questions about the North Pole itself. What is it, where exactly is it, and why is it such an object of interest?
Displaying a flag at the North Pole has been a well-known international game for about a century. On the ice-covered surface of the ocean, as close to 90 degrees north as navigation systems could determine, flags of many nations — United States, U.S.S.R./Russia, United Kingdom, Canada, Norway and France at least have been unfurled, not to mention the personal flags carried there by passengers from many nationalities on Russian tourist trips. Flags have been carried there by ships, aircraft, submarines, skidoos, dog teams, and cross-ocean skiers. From the air, Norwegian, Italian, and Soviet flags have been dropped over the pole, almost as a rite of passage. And the flag planted on the sea bed by the deputy speaker of the Russian Parliament is the second Russian flag in or near that location; the first was placed there 40 years ago, together with flags of all member states of the United Nations and of the United Nations Organization itself, by a Canadian scientific party, demonstrating that the North Pole belonged to no single nation but that the information from that spot was the property of all humankind.
However, the importance of the North Pole, the challenge it represents, and the fascination it has for governments, for science, and for adventurous personalities, has a much longer history and larger importance.
In a crude way, the North Pole is easy to define. It is simply the north end of the axis around which our planet turns in its daily rotation. The axis emerges from the solid earth on the lower flank of the long undersea mountain range known as the Lomonosov Ridge, at a depth of 4,621 metres below present sea level. The sea ice above it is generally tightly packed, but broken and jumbled and sometimes with large cracks or patches of open water, and moves erratically, usually in the general direction of the west side of the Atlantic Ocean, at about a kilometre a day (although one time when we were camped there a three-day storm moved us about 40 kilometres).
This axis wobbles a bit, rather like an unbalanced wheel with a faulty bearing, so that the precise North Pole is fleeting or meaningless. The North Pole itself is not a place; it has no lateral dimension; but as a mathematical or observational construct it is essential for map-makers and modellers and has been a powerful symbol in philosophy and the public mind for centuries.
Egyptian, Arab, and Greek star-gazers had noted as early as 3000 BC that the heavens revolved around a single point, close to a star in the constellation now known by the Latin name Ursa Minor (Little Bear). That star is in his tail (for some reason, celestial bears have long tails while earthly bears do not). The Greeks named this star Polaris, marking the pivot or axis, directly under which there must be a North Pole (pivot point) on the Earth, and by extension a South Pole on the opposite side of the globe. They divided the Earth into degrees of latitude, and thus the North Pole was exactly 90 degrees North, at right angles to the plane of the Equator. Greek and Roman astronomers and poets incorporated the concept into their literature.
When the first recorded Arctic navigator, Pytheas, about 320 BC voyaged north past the coasts of France and Britain and on until he encountered what must have been sea ice, he reported that the pole star was very high overhead, and that huge white bears roamed on the sea, confirming the speculations that the regions under Polaris were guarded by the celestial bears Arctos, and it has been known as the Arctic ever since.
The first description of the North Pole itself, of which we have evidence today, is in a book attributed to Nicholas of Linne, a scholar of Oxford, entitled De Inventione Fortunata and subtitled qui liber incipit a gradua 54 usque ad polum (“which book begins at latitude 54 degrees and goes as far as the pole”). No copies are known today, but the book was widely quoted, and shows that by the 14th century, degrees of latitude were already in use for geographical description and that the North Pole was a widely understood concept. For the next several centuries, this book was the North Pole reference for geographers and cartographers.
Johannes Ruysch of the Netherlands made one of the first maps of the North Pole region. On his 1507 map, which was included as Plate 1 in the 1506 edition of the authoritative text Ptolemy’s Geography, he cites his source: “In the book De Inventione Fortunata it may be read that at the North Pole there is a high mountain of magnetic stone 33 German miles in circumference. This is surrounded by mare sugunum which pours out water like a vessel through openings below. Around it are four islands, surrounded by extensive desolate mountains for 24 days’ journey, where there is no human habitation.”
It is speculated today that Nicholas of Linne probably assembled his information from Norse seafaring stories and myths, and made a logical attempt to explain the mysterious force that attracted the magnetic lodestone, or compass, which was at that time coming into use. It was also apparently an attempt to explain what happens to the water of the Atlantic Ocean which flows in a northerly direction past the coasts of Europe.
Later map-makers, such as Mercator, who produced world charts which they continually up-dated as new discoveries were made, retained the four islands and the central mountain of De Inventions Fortunate at the North Pole up until the 17th century.
Where exactly is the North Pole?
Despite the philosophical and scientific success of the First International Polar Year, the international steeplechase to the North Pole continued.
In 1909, after several futile attempts, Robert Peary of the United States Navy reached what he determined to be Latitude 90 degrees north — the North Pole. To be sure of his position, Peary travelled some distance beyond his calculated spot, and also a number of miles at right angles to his approach route, to take supplementary readings of the altitude of the sun.
Many scholars and analysts have examined Peary’s field notes and calculations, and have detected what seem to be errors and discrepancies, but the general conclusion is that, as an experienced naval officer with a high standard of integrity despite his over-riding personal ambition, Peary did reach 90 degrees north as accurately as his instruments and the navigation tables of the time could determine.
Modem analysts have expressed the opinion that, given the equipment he had, at the time of his last observation Peary was probably within a kilometre of the pole as it was at that moment. If indeed his notebooks contain his actual readings and not later back-calculations, Peary can be given credit for the first attainment of the long-sought-after goal.
But where exactly was, or is, the centre of rotation?
The analyses of Peary’s and other more sophisticated determinations of high-latitude positions reveal some sources of error and uncertainty in attempting to locate the axis of our spinning planet. These can include variations in the refraction of light from the sun or stars to an observer on the surface; the fact that the sea ice upon which the instruments are mounted is changing position or rotating while the observations are being made; that the sea and its cover of ice are “tilted” by ocean currents and wind, so that the horizon is not exactly perpendicular to the pull of gravity; and that the “vertical” direction of gravity may not be parallel to the axis of rotation because of asymmetry of the geological structure of the underlying rock. To add to these problems, the navigation tables available to Peary and until 40 years ago and used to calculate the trajectory of the sun were based on observations made at lower latitudes and extrapolated to highest latitudes on the assumption that the sea-level shape of the Earth was a sphere. Also, because of the “polar wobble” the precise pole is hard to catch. Lutke’s mathematical line upon which to raise the flag seems to be dancing.
None of these problems were of concern to Admiral Peary or to most of the several parties that have reached the pole — close enough for their purposes — in the following century. But for those who are responsible for precision of navigation at high latitudes, or for exact description of the behaviour of the planet, they become important.
With the advent of polar-orbiting satellites and long-range rockets during IPY-III, and the consequent military development in the United States and U.S.S.R. of Intercontinental Ballistic Missiles whose tracks crossed the Arctic region at high latitudes, it became important to know quite precisely the shape of the planet and the distribution of the pull of gravity in the region of the North Pole. Geodesists and astronomers had already calculated a mathematical figure for the planet, known as the geoid, and had determined that the Earth was a slightly flattened sphere with its polar dimension some 40 kilometres less than the average equatorial diameter (12,720 kilometres vs. 12,760 kilometres). The expected orbits of the satellites and the potential tracks of missiles were calculated with respect to the geoid.
For a single pass of a satellite, the uncertainty in the geoid calculation was insignificant. But with repeated passes, errors accumulated and became important. As the tracks of the satellites and rockets are determined by the Earth’s gravity field under their path, it became important to know accurately the shape of the geoid and the variations in gravity at highest latitudes.
The obvious way to check the apparent errors in satellite tracks was to compare observations of the passes of the satellites with the apparent movements of the stars, which showed how the planet, together with its atmosphere and its gravity field, was moving in space in its orbit around the sun, carrying the orbiting satellites with it. The Canadian Polar Continental Shelf Project, of which I was director at the time, undertook a study of this problem.
The discrepancies between the observations of satellite passes and their calculated orbits could only be measured directly by instruments located as close as possible to the pole, where the stars remain at nearly constant angle above the horizon as the Earth rotates, so that unknown errors due to refraction by light taking different paths through the atmospheric layers would be minimized. Thus, very careful prolonged observation at the highest possible latitude was necessary.
In 1967, we carried out a geodetic/geophysical/hydrographic reconnaissance in the vicinity of the North Pole to ascertain whether it would be feasible to take readings with the required accuracy of the stars and passing satellites from stations on the drifting sea ice, to measure the tilt of the sea ice horizon, and to relate these measurements to the movement of the instruments on the ice as determined from sonar signals from a fixed location on the sea floor. The reconnaissance was successful. The party spent nearly two weeks camping and setting up instruments between 89 and 90 degrees north, serviced by a single-engine Otter aircraft which also carried out hydrographic and gravity measurements that gave a profile of the sea floor and information on the geological structures between the North Pole and the nearest land, Greenland and Ellesmere Island, about 850 kilometres away.
For the fixed location on the sea floor we had built a battery-powered sonar transponder that could be activated by a sound signal from the surface at a given frequency, and which would then send a coded signal back to the surface. The time interval between the outgoing and received signals, corrected for the speed of sound in the different layers of water gave a measurement of the distance between the sea-floor transponder and the instrument on the ice surface. We were thus able to track the movements of instruments on the sea ice quite accurately.
The transponder was a tube 15 centimetres in diameter and a metre and a half long. We called it, naturally, “The North Pole,” so we painted that name on it. Just for fun, and because we were all convinced of the international value of our work, we applied below the name the flag of the United Nations the flags of all the circumpolar countries including of course the U.S.S.R., and then the flags of all the member states of the United Nations. These flags were sticky-paper prints from a school geography exercise book, designed for students to peel off and stick on descriptions of respective countries. We applied the flags in alphabetical order on the transponder, then sealed the whole instrument with fibreglass resin.
As I wrote to my superior at the time, the North Pole, a point without dimensions, belongs to no country, and we hoped our work would be useful to all humankind.
The transponder worked well. We now had a real pole at the North Pole. Weyprecht would have been pleased: the geographical pole was being used for observing phenomena of planetary behaviour.
Thus it came about that a Canadian party of scientists spontaneously placed the flags of the United Nations on the sea bed at the North Pole, 40 years before Russia noisily planted a second Russian flag for political reasons. Soviet scientists at the time, of course, knew all about our activity. None of our work was secret or classified. And a couple of years later the director of the U.S.S.R. Arctic and Antarctic Research Institute congratulated us on a fine piece of work.