Science & Tech

'Marsquakes' could point the way to life on the red planet

Researchers say the presence of stored hydrogen in ancient fractured rocks on Earth has implications for possible Martian microbes
  • Sep 30, 2016
  • 413 words
  • 2 minutes
An example of pseudotachylite Expand Image
Advertisement

When it comes to geological processes, Earth and Mars have a lot in common, including a history of seismic activity. Now, new research suggests the sites of ‘Marsquakes’ could be a good place to begin looking for evidence of life on the red planet. 

An international team of scientists that included Nigel Blamey, an assistant professor in the Department of Earth Sciences at Ontario’s Brock University, analyzed rock samples from ancient meteorite impact craters and seismic zones in Scotland, South Africa and Sudbury, Ont., and confirmed that the friction caused by major seismic events produces rock containing hydrogen — a potential food for simple life forms. 

So-called “hydrogenotrophs” — organisms that are able to metabolize hydrogen as an energy source — were among the earliest forms of life on Earth and still exist deep in its crust. Blamey and fellow researchers Sean McMahon and John Parnell from the University of Aberdeen, Scotland, say their findings, published this month in the journal Astrobiology, indicate there’s a good chance the conditions that could support hydrogenotrophs are also present beneath the surface of Mars. 

“If we want to find life on Mars, we need to look for two things: water and an energy source,” Blamey explains. Last year, NASA scientists confirmed the presence of liquid subsurface water on Mars; the Aberdeen study suggests that the best place to look for an energy source — in this case, hydrogen — would be in faults and craters similar to those the researchers analyzed on Earth. 

“Marsquakes will certainly fracture the rock, and there’s potential there for hydrogen, so from our perspective, this is one of the targets that could possibly be used to go looking for life,” Blamey says. 

The Aberdeen study zeroed in on pseudotachylite, a type of glass-like rock formed by intense friction, for example from a powerful earthquake or meteorite impact. Pseudotachylites from the three study sites were consistently found to contain more hydrogen than other rocks in the control group — the more friction there had been, the more hydrogen. 

The tectonics of Mars are still a matter of debate, but McMahon, the study’s lead author, says it’s likely pseudotachylites would be present around the many cracks and craters in the planet’s rocky surface.

In 2018, NASA plans to launch its Interior Exploration using Seismic Investigations, Geodesy and Heat Transport (InSight) mission, which will study the deep interior of Mars. Blamey says his team is hopeful NASA will consider their research when selecting targets for investigation.

Advertisement

Related Content

A grizzly bear lies dead on the side of the road

Wildlife

Animal crossing: Reconnecting North America’s most important wildlife corridor

This past summer an ambitious wildlife under/overpass system broke ground in B.C. on a deadly stretch of highway just west of the Alberta border. Here’s how it happened.

  • 3625 words
  • 15 minutes
illegal wildlife trade, elephant foot, ivory, biodiversity

Wildlife

The illegal wildlife trade is a biodiversity apocalypse

An estimated annual $175-billion business, the illegal trade in wildlife is the world’s fourth-largest criminal enterprise. It stands to radically alter the animal kingdom.

  • 3405 words
  • 14 minutes

People & Culture

With old traditions and new tech, young Inuit chart their changing landscape

For generations, hunting, and the deep connection to the land it creates, has been a mainstay of Inuit culture. As the coastline changes rapidly—reshaping the marine landscape and jeopardizing the hunt—Inuit youth are charting ways to preserve the hunt, and their identity. 

  • 5346 words
  • 22 minutes

Environment

The sixth extinction

The planet is in the midst of drastic biodiversity loss that some experts think may be the next great species die-off. How did we get here and what can be done about it?

  • 4869 words
  • 20 minutes